4 found
Order:
  1.  35
    Hydrodynamics of the Physical Vacuum: I. Scalar Quantum Sector.Valeriy I. Sbitnev - 2016 - Foundations of Physics 46 (5):606-619.
    Physical vacuum is a special superfluid medium. Its motion is described by the Navier–Stokes equation having two slightly modified terms that relate to internal forces. They are the pressure gradient and the dissipation force because of viscosity. The modifications are as follows: the pressure gradient contains an added term describing the pressure multiplied by the entropy gradient; time-averaged viscosity is zero, but its variance is not zero. Owing to these modifications, the Navier–Stokes equation can be reduced to the Schrödinger equation (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  13
    Quaternion Algebra on 4D Superfluid Quantum Space-Time: Gravitomagnetism.Valeriy I. Sbitnev - 2019 - Foundations of Physics 49 (2):107-143.
    Gravitomagnetic equations result from applying quaternionic differential operators to the energy–momentum tensor. These equations are similar to the Maxwell’s EM equations. Both sets of the equations are isomorphic after changing orientation of either the gravitomagnetic orbital force or the magnetic induction. The gravitomagnetic equations turn out to be parent equations generating the following set of equations: the vorticity equation giving solutions of vortices with nonzero vortex cores and with infinite lifetime; the Hamilton–Jacobi equation loaded by the quantum potential. This equation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  26
    Hydrodynamics of the Physical Vacuum: II. Vorticity Dynamics.Valeriy I. Sbitnev - 2016 - Foundations of Physics 46 (10):1238-1252.
    Physical vacuum is a special superfluid medium populated by enormous amount of virtual particle-antiparticle pairs. Its motion is described by the modified Navier–Stokes equation: the pressure gradient divided by the mass density is replaced by the gradient from the quantum potential; time-averaged the viscosity vanishes, but its variance is not zero. Vortex structures arising in this medium show infinitely long lifetime owing to zero average viscosity. The nonzero variance is conditioned by exchanging the vortex energy with zero-point vacuum fluctuations. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  14
    Quaternion Algebra on 4D Superfluid Quantum Space-Time. Dirac’s Ghost Fermion Fields.Valeriy I. Sbitnev - 2022 - Foundations of Physics 52 (1):1-21.
    Ghost Dirac’s fermions are a manifestation of virtual particles. One fermion is the particle whose companion is the antiparticle. An ensemble of these fermions coupled in pairs represents the Bose-Einstein condensate. This condensate forms the superfluid ether. Due to the Meissner effect inherent in a superfluid medium, the paired fermions are inaccessible for instrument observation. For that reason, the ghost particles can pose the dark matter that, together with the dark energy, can be the fundamental basis of physical reality. In (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark